Leskinen, J.* ; Hartikainen, A.* ; Väätäinen, S.* ; Ihalainen, M.* ; Virkkula, A.* ; Mesceriakovas, A.* ; Tiitta, P.* ; Miettinen, M.* ; Lamberg, H.* ; Czech, H. ; Yli-Pirilä, P.* ; Tissari, J.* ; Jakobi, G. ; Zimmermann, R. ; Sippula, O.*
Photochemical aging induces changes in the effective densities, morphologies, and optical pof combustion aerosol particles.
Environ. Sci. Technol. 57, 5137-5148 (2023)
Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Aerosol Optics ; Black Carbon ; Brown Coal ; Combustion Aerosol ; Morphology ; Photochemical Aging ; Residential Combustion ; Soot ; Wood; Secondary Organic Aerosol; Absorption Angstrom Exponent; Residential Wood Combustion; Black Carbon; Brown Carbon; Light-absorption; Source Apportionment; Radiative Properties; Soot Particles; Mixing State
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
0013-936X
e-ISSN
1520-5851
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 57,
Issue: 13,
Pages: 5137-5148
Article Number: ,
Supplement: ,
Series
Publisher
ACS
Publishing Place
Washington, DC
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-504500-001
Grants
Academy of Finland (AKA)
Business Finland project Black Carbon Footprint (BCF)
Academy of Finland project Antarctic Climate Forcing Aerosol (ACFA)
Academy of Finland
Aerosols and Health (HICE) - Initiative and Networking Fund of the Helmholtz Association (HGF, Germany)
Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health?
Copyright
Erfassungsdatum
2023-10-06