PuSH - Publication Server of Helmholtz Zentrum München

Schlaeger, S.* ; Drummer, K.* ; El Husseini, M.* ; Kofler, F. ; Sollmann, N.* ; Schramm, S.* ; Zimmer, C.* ; Wiestler, B.* ; Kirschke, J.S.*

Synthetic T2-weighted fat sat based on a generative adversarial network shows potential for scan time reduction in spine imaging in a multicenter test dataset.

Eur. Radiol. 33, 5882-5893 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
OBJECTIVES: T2-weighted (w) fat sat (fs) sequences, which are important in spine MRI, require a significant amount of scan time. Generative adversarial networks (GANs) can generate synthetic T2-w fs images. We evaluated the potential of synthetic T2-w fs images by comparing them to their true counterpart regarding image and fat saturation quality, and diagnostic agreement in a heterogenous, multicenter dataset. METHODS: A GAN was used to synthesize T2-w fs from T1- and non-fs T2-w. The training dataset comprised scans of 73 patients from two scanners, and the test dataset, scans of 101 patients from 38 multicenter scanners. Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured in true and synthetic T2-w fs. Two neuroradiologists graded image (5-point scale) and fat saturation quality (3-point scale). To evaluate whether the T2-w fs images are indistinguishable, a Turing test was performed by eleven neuroradiologists. Six pathologies were graded on the synthetic protocol (with synthetic T2-w fs) and the original protocol (with true T2-w fs) by the two neuroradiologists. RESULTS: aSNR and aCNR were not significantly different between the synthetic and true T2-w fs images. Subjective image quality was graded higher for synthetic T2-w fs (p = 0.023). In the Turing test, synthetic and true T2-w fs could not be distinguished from each other. The intermethod agreement between synthetic and original protocol ranged from substantial to almost perfect agreement for the evaluated pathologies. DISCUSSION: The synthetic T2-w fs might replace a physical T2-w fs. Our approach validated on a challenging, multicenter dataset is highly generalizable and allows for shorter scan protocols. KEY POINTS: • Generative adversarial networks can be used to generate synthetic T2-weighted fat sat images from T1- and non-fat sat T2-weighted images of the spine. • The synthetic T2-weighted fat sat images might replace a physically acquired T2-weighted fat sat showing a better image quality and excellent diagnostic agreement with the true T2-weighted fat images. • The present approach validated on a challenging, multicenter dataset is highly generalizable and allows for significantly shorter scan protocols.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Artificial Intelligence ; Magnetic Resonance Imaging ; Spine; Lumbar Spine; Resonance; Mri; Degeneration; Suppression; Fractures; Infection; Sequence; System; Echo
ISSN (print) / ISBN 0938-7994
e-ISSN 1432-1084
Quellenangaben Volume: 33, Issue: 8, Pages: 5882-5893 Article Number: , Supplement: ,
Publisher Springer
Publishing Place One New York Plaza, Suite 4600, New York, Ny, United States
Non-patent literature Publications
Reviewing status Peer reviewed
Grants European Research Council (ERC) under the European Union
ERC
BMBF (German Ministry of Education and Research)
DFG