PuSH - Publication Server of Helmholtz Zentrum München

Giannella, M.* ; Huth, M. ; Righi, E.* ; Hasenauer, J. ; Marconi, L.* ; Konnova, A.* ; Gupta, A.* ; Hotterbeekx, A.* ; Berkell, M.* ; Palacios-Baena, Z.R.* ; Morelli, M.C.* ; Tamè, M.* ; Busutti, M.* ; Potena, L.* ; Salvaterra, E.* ; Feltrin, G.* ; Gerosa, G.* ; Furian, L.* ; Burra, P.* ; Piano, S.* ; Cillo, U.* ; Cananzi, M.* ; Loy, M.* ; Zaza, G.* ; Onorati, F.* ; Carraro, A.* ; Gastaldon, F.* ; Nordio, M.* ; Kumar-Singh, S.* ; Baño, J.R.* ; Lazzarotto, T.* ; Viale, P.* ; Tacconelli, E.*

Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: The multicentre ORCHESTRA cohort.

Clin. Microbiol. Infect. 29, 1084.e1-1084.e7 (2023)
Publ. Version/Full Text DOI PMC
Closed
Open Access Green as soon as Postprint is submitted to ZB.
OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021-January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t0), second dose (t1), 3 ± 1 month (t2), and 1 month after third dose (t3). Negative AbR at t3 was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t0 to t3. Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36-0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35-0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
14.200
0.000
2
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Antibody Response ; Covid-19 ; Machine Learning ; Sars-cov-2 ; Solid Organ Transplantation ; Vaccination; Covid-19 Vaccine
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 1198-743X
e-ISSN 1469-0691
Quellenangaben Volume: 29, Issue: 8, Pages: 1084.e1-1084.e7 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-010
G-553800-001
Grants European Union
Scopus ID 85160302296
PubMed ID 37150358
Erfassungsdatum 2023-10-06