Giannella, M.* ; Huth, M. ; Righi, E.* ; Hasenauer, J. ; Marconi, L.* ; Konnova, A.* ; Gupta, A.* ; Hotterbeekx, A.* ; Berkell, M.* ; Palacios-Baena, Z.R.* ; Morelli, M.C.* ; Tamè, M.* ; Busutti, M.* ; Potena, L.* ; Salvaterra, E.* ; Feltrin, G.* ; Gerosa, G.* ; Furian, L.* ; Burra, P.* ; Piano, S.* ; Cillo, U.* ; Cananzi, M.* ; Loy, M.* ; Zaza, G.* ; Onorati, F.* ; Carraro, A.* ; Gastaldon, F.* ; Nordio, M.* ; Kumar-Singh, S.* ; Baño, J.R.* ; Lazzarotto, T.* ; Viale, P.* ; Tacconelli, E.*
     
    
        
Using machine learning to predict antibody response to SARS-CoV-2 vaccination in solid organ transplant recipients: The multicentre ORCHESTRA cohort.
    
    
        
    
    
        
        Clin. Microbiol. Infect. 29, 1084.e1-1084.e7 (2023)
    
    
    
      
      
	
	    OBJECTIVES: The study aim was to assess predictors of negative antibody response (AbR) in solid organ transplant (SOT) recipients after the first booster of SARS-CoV-2 vaccination. METHODS: Solid organ transplant recipients receiving SARS-CoV-2 vaccination were prospectively enrolled (March 2021-January 2022) at six hospitals in Italy and Spain. AbR was assessed at first dose (t0), second dose (t1), 3 ± 1 month (t2), and 1 month after third dose (t3). Negative AbR at t3 was defined as an anti-receptor binding domain titre <45 BAU/mL. Machine learning models were developed to predict the individual risk of negative (vs. positive) AbR using age, type of transplant, time between transplant and vaccination, immunosuppressive drugs, type of vaccine, and graft function as covariates, subsequently assessed using a validation cohort. RESULTS: Overall, 1615 SOT recipients (1072 [66.3%] males; mean age±standard deviation [SD], 57.85 ± 13.77) were enrolled, and 1211 received three vaccination doses. Negative AbR rate decreased from 93.66% (886/946) to 21.90% (202/923) from t0 to t3. Univariate analysis showed that older patients (mean age, 60.21 ± 11.51 vs. 58.11 ± 13.08), anti-metabolites (57.9% vs. 35.1%), steroids (52.9% vs. 38.5%), recent transplantation (<3 years) (17.8% vs. 2.3%), and kidney, heart, or lung compared with liver transplantation (25%, 31.8%, 30.4% vs. 5.5%) had a higher likelihood of negative AbR. Machine learning (ML) algorithms showing best prediction performance were logistic regression (precision-recall curve-PRAUC mean 0.37 [95%CI 0.36-0.39]) and k-Nearest Neighbours (PRAUC 0.36 [0.35-0.37]). DISCUSSION: Almost a quarter of SOT recipients showed negative AbR after first booster dosage. Unfortunately, clinical information cannot efficiently predict negative AbR even with ML algorithms.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Antibody Response ; Covid-19 ; Machine Learning ; Sars-cov-2 ; Solid Organ Transplantation ; Vaccination; Covid-19 Vaccine
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2023
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2023
    
 
    
    
        ISSN (print) / ISBN
        1198-743X
    
 
    
        e-ISSN
        1469-0691
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 29,  
	    Issue: 8,  
	    Pages: 1084.e1-1084.e7 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Wiley
        
 
        
            Publishing Place
            The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-503800-010
G-553800-001
    
 
    
        Grants
        European Union
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-06