as soon as is submitted to ZB.
Advanced mass spectrometric techniques for the comprehensive study of synthesized silicon-based silyl organic compounds : Identifying fragmentation pathways and characterization.
Materials 16:17 (2023)
The primary objective of this study was to synthesize and characterize novel silicon-based silyl organic compounds in order to gain a deeper understanding of their potential applications and interactions with other compounds. Four new artificial silyl organic compounds were successfully synthesized: 1-O-(Trimethylsilyl)-2,3,4,6-tetra-O-acetyl-β-d-glucopyranose (compound 1), 1-[(1,1-dimethylehtyl)diphenylsilyl]-1H-indole (compound 2), O-tert-butyldiphenylsilyl-(3-hydroxypropyl)oleate (compound 3), and 1-O-tert-Butyldiphenylsilyl-myo-inositol (compound 4). To thoroughly characterize these synthesized compounds, a combination of advanced mass spectrometric techniques was employed, including nanoparticle-assisted laser desorption/ionization mass spectrometry (NALDI-MS), Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and triple quadrupole electrospray tandem mass spectrometry (QqQ ESI-MS/MS). These analytical methods enabled the accurate identification and characterization of the synthesized silyl organic compounds, providing valuable insights into their properties and potential applications. Furthermore, the electrospray ionization-Fourier transform ion cyclotron resonance-tandem mass spectrometry (ESI-FT-ICR-MS/MS) technique facilitated the proposal of fragmentation pathways for the ionized silyl organic compounds, contributing to a more comprehensive understanding of their behavior during mass spectrometric analysis. These findings suggest that mass spectrometric techniques offer a highly effective means of investigating and characterizing naturally occurring silicon-based silyl organic compounds, with potential implications for advancing research in various fields and applications in different industries.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Fragmentation Pathway ; Mass Spectrometry ; Organic Synthesis ; Silicon-based Silyl Organic Compounds; Association; Plants
ISSN (print) / ISBN
1996-1944
Journal
Materials
Quellenangaben
Volume: 16,
Issue: 9,
Article Number: 17
Publisher
MDPI
Publishing Place
Basel
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Research Unit Analytical BioGeoChemistry (BGC)
Grants
National Science Centre of Poland (Krakow, Poland)