Kastlmeier, M.T. ; Gonzalez-Rodriguez, E. ; Cabanis , P. ; Günther, E. ; König, A.-C. ; Han, L. ; Hauck, S.M. ; See, F. ; Asgharpour, S. ; Bukas, C. ; Burgstaller, G. ; Piraud, M. ; Lehmann, M. ; Hatz, R.A.* ; Behr, J.* ; Stöger, T. ; Hilgendorff, A. ; Voss, C.
Cytokine signaling converging on IL11 in ILD fibroblasts provokes aberrant epithelial differentiation signatures.
Front. Immunol. 14:1128239 (2023)
INTRODUCTION: Interstitial lung disease (ILD) is a heterogenous group of lung disorders where destruction and incomplete regeneration of the lung parenchyma often results in persistent architectural distortion of the pulmonary scaffold. Continuous mesenchyme-centered, disease-relevant signaling likely initiates and perpetuates the fibrotic remodeling process, specifically targeting the epithelial cell compartment, thereby destroying the gas exchange area. METHODS: With the aim of identifying functional mediators of the lung mesenchymal-epithelial crosstalk with potential as new targets for therapeutic strategies, we developed a 3D organoid co-culture model based on human induced pluripotent stem cell-derived alveolar epithelial type 2 cells that form alveolar organoids in presence of lung fibroblasts from fibrotic-ILD patients, in our study referring to cases of pulmonary fibrosis, as well as control cell line (IMR-90). RESULTS: While organoid formation capacity and size was comparable in the presence of fibrotic-ILD or control lung fibroblasts, metabolic activity was significantly increased in fibrotic-ILD co-cultures. Alveolar organoids cultured with fibrotic-ILD fibroblasts further demonstrated reduced stem cell function as reflected by reduced Surfactant Protein C gene expression together with an aberrant basaloid-prone differentiation program indicated by elevated Cadherin 2, Bone Morphogenic Protein 4 and Vimentin transcription. To screen for key mediators of the misguided mesenchymal-to-epithelial crosstalk with a focus on disease-relevant inflammatory processes, we used mass spectrometry and characterized the secretome of end stage fibrotic-ILD lung fibroblasts in comparison to non-chronic lung disease (CLD) patient fibroblasts. Out of the over 2000 proteins detected by this experimental approach, 47 proteins were differentially abundant comparing fibrotic-ILD and non-CLD fibroblast secretome. The fibrotic-ILD secretome profile was dominated by chemokines, including CXCL1, CXCL3, and CXCL8, interfering with growth factor signaling orchestrated by Interleukin 11 (IL11), steering fibrogenic cell-cell communication, and proteins regulating extracellular matrix remodeling including epithelial-to-mesenchymal transition. When in turn treating alveolar organoids with IL11, we recapitulated the co-culture results obtained with primary fibrotic-ILD fibroblasts including changes in metabolic activity. CONCLUSION: We identified mediators likely contributing to the disease-perpetuating mesenchymal-to-epithelial crosstalk in ILD. In our alveolar organoid co-cultures, we were able to highlight the importance of fibroblast-initiated aberrant epithelial differentiation and confirmed IL11 as a key player in fibrotic-ILD pathogenesis by unbiased fibroblast secretome analysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Il11 ; Co-culture Model ; Cytokine ; Disease Modeling ; Human Pluripotent Stem Cells ; Interstitial Lung Disease ; Organoids ; Secretome; Lung-disease; Cells; Pathogenesis; Proteomics
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1664-3224
e-ISSN
1664-3224
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 14,
Issue: ,
Pages: ,
Article Number: 1128239
Supplement: ,
Series
Publisher
Frontiers
Publishing Place
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
80000 - German Center for Lung Research
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Research field(s)
Lung Research
Enabling and Novel Technologies
PSP Element(s)
G-505000-001
G-552100-001
G-501800-805
G-505700-001
G-501800-814
G-530001-001
G-501600-014
G-501800-803
A-630700-001
Grants
Helmholtz Munich
German Center of Lung Research (DZL)
DFG, LMU Munich
Copyright
Erfassungsdatum
2023-10-06