Hoerger, T.J.* ; Hilscher, R.* ; Neuwahl, S.* ; Kaufmann, M.B.* ; Shao, H.* ; Laxy, M. ; Cheng, Y.J.* ; Benoit, S.* ; Chen, H.* ; Anderson, A.* ; Craven, T.* ; Yang, W.* ; Cintina, I.* ; Staimez, L.* ; Zhang, P.*
A new type 2 diabetes microsimulation model to estimate long-term health outcomes, costs, and cost-effectiveness.
Value Health 26, 1372-1380 (2023)
OBJECTIVES: This study aimed to develop a microsimulation model to estimate the health effects, costs, and cost-effectiveness of public health and clinical interventions for preventing/managing type 2 diabetes. METHODS: We combined newly developed equations for complications, mortality, risk factor progression, patient utility, and cost-all based on US studies-in a microsimulation model. We performed internal and external validation of the model. To demonstrate the model's utility, we predicted remaining life-years, quality-adjusted life-years (QALYs), and lifetime medical cost for a representative cohort of 10 000 US adults with type 2 diabetes. We then estimated the cost-effectiveness of reducing hemoglobin A1c from 9% to 7% among adults with type 2 diabetes, using low-cost, generic, oral medications. RESULTS: The model performed well in internal validation; the average absolute difference between simulated and observed incidence for 17 complications was < 8%. In external validation, the model was better at predicting outcomes in clinical trials than in observational studies. The cohort of US adults with type 2 diabetes was projected to have an average of 19.95 remaining life-years (from mean age 61), incur $187 729 in discounted medical costs, and accrue 8.79 discounted QALYs. The intervention to reduce hemoglobin A1c increased medical costs by $1256 and QALYs by 0.39, yielding an incremental cost-effectiveness ratio of $9103 per QALY. CONCLUSIONS: Using equations exclusively derived from US studies, this new microsimulation model achieves good prediction accuracy in US populations. The model can be used to estimate the long-term health impact, costs, and cost-effectiveness of interventions for type 2 diabetes in the United States.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Diabetes ; Microsimulation ; Probabilistic Sensitivity Analysis ; Risk Equations; Coronary-heart-disease; Cardiovascular Outcomes; Validation
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1098-3015
e-ISSN
1524-4733
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 26,
Issue: 9,
Pages: 1372-1380
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-505300-002
Grants
Centers for Disease Control and Prevention
Copyright
Erfassungsdatum
2023-10-06