Cultured brain pericytes adopt an immature phenotype and require endothelial cells for expression of canonical markers and ECM genes.
Front. Cell. Neurosci. 17:1165887 (2023)
Pericytes (PCs) are essential components of the blood brain barrier. Brain PCs are critical for dynamically regulating blood flow, for maintaining vascular integrity and their dysregulation is associated with a myriad of disorders such as Alzheimer's disease. To understand their physiological and molecular functions, studies have increasingly focused on primary brain PC isolation and culture. Multiple methods for PC culture have been developed over the years, however, it is still unclear how primary PCs compare to their in vivo counterparts. To address this question, we compared cultured brain PCs at passage 5 and 20 to adult and embryonic brain PCs directly isolated from mouse brains via single cell RNA-seq. Cultured PCs were highly homogeneous, and were most similar to embryonic PCs, while displaying a significantly different transcriptional profile to adult brain PCs. Cultured PCs downregulated canonical PC markers and extracellular matrix (ECM) genes. Importantly, expression of PC markers and ECM genes could be improved by co-culture with brain endothelial cells, showing the importance of the endothelium in maintaining PC identity and function. Taken together, these results highlight key transcriptional differences between cultured and in vivo PCs which should be considered when performing in vitro experiments with brain PCs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Brain ; Endothelial ; Extracellular Matrix ; Pericytes ; Single Cell Rna-seq ; Vasculature; Microvascular Pericytes; Atlas; Ablation; Origin
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
e-ISSN
1662-5102
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 17,
Issue: ,
Pages: ,
Article Number: 1165887
Supplement: ,
Series
Publisher
Frontiers
Publishing Place
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-555000-001
G-506502-001
Grants
Copyright
Erfassungsdatum
2023-10-06