PuSH - Publication Server of Helmholtz Zentrum München

Ru, J. ; Xue, J. ; Sun, J.* ; Cova, L. ; Deng, L.

Unveiling the hidden role of aquatic viruses in hydrocarbon pollution bioremediation.

J. Hazard. Mater. 459:132299 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation, which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This study examines the diversity and activity of hydrocarbon-degradation genes encoded by environmental viruses, focusing on phages, within public databases. We identified 57 high-quality phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we refer to as virus-encoded hydrocarbon degradation genes (vHYDEGs). These genes are encoded by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere. Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed the diverse evolutionary trajectories of vHYDEGs across habitats, revealing previously unknown biodegraders linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and promoting their propagation. To support future research, we developed vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of hydrocarbon degradation AMGs and encouraging their bioremediation applications.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Alkane Hydroxylases ; Auxiliary Metabolic Gene ; Bacteriophages ; Bioremediation ; Virus-encoded Hydrocarbon Degradation Genes; Alkane Hydroxylases; Monooxygenase Genes; Metabolic Genes; Transfer-rnas; High-accuracy; Oil; Diversity; Biodegradation; Degradation; Bacteria
ISSN (print) / ISBN 0304-3894
e-ISSN 1873-3336
Quellenangaben Volume: 459, Issue: , Pages: , Article Number: 132299 Supplement: ,
Publisher Elsevier
Publishing Place Radarweg 29, 1043 Nx Amsterdam, Netherlands
Non-patent literature Publications
Reviewing status Peer reviewed
Grants China Scholarship Council (CSC)
German Research Foundation