PuSH - Publication Server of Helmholtz Zentrum München

Horlacher, M. ; Wagner, N.* ; Moyon, L. ; Kuret, K.* ; Goedert, N. ; Salvatore, M.* ; Ule, J.* ; Gagneur, J. ; Winther, O.* ; Marsico, A.

Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning.

Genome Biol. 24:180 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and miCLIP assays, outperforming state-of-the-art classifiers. RBPNet performs bias correction by modeling the raw signal as a mixture of the protein-specific and background signal. Through model interrogation via Integrated Gradients, RBPNet identifies predictive sub-sequences that correspond to known and novel binding motifs and enables variant-impact scoring via in silico mutagenesis. Together, RBPNet improves imputation of protein-RNA interactions, as well as mechanistic interpretation of predictions.
Impact Factor
Scopus SNIP
Altmetric
12.300
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Clip-seq ; Computational Biology ; Deep Learning ; Protein-rna Interaction; Binding Protein; Sites; Specificities; Discovery; Specify; Motifs
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 24, Issue: 1, Pages: , Article Number: 180 Supplement: ,
Publisher Bmc
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
G-503800-004
Grants Wellcome Trust
Scopus ID 85166598318
PubMed ID 37542318
Erfassungsdatum 2023-10-06