Jo, T.* ; Kim, J.* ; Bice, P.* ; Huynh, K.* ; Wang, T.* ; Arnold, M. ; Meikle, P.J.* ; Giles, C.* ; Kaddurah-Daouk, R.* ; Saykin, A.J.* ; Nho, K.* ; Kueider-Paisley, A.* ; Doraiswamy, P.M.* ; Blach, C.* ; Moseley, A.* ; Thompson, W.* ; St John-Williams, L.* ; Mahmoudiandehkhordi, S.* ; Tenenbaum, J.* ; Welsh-Balmer, K.* ; Plassman, B.* ; Risacher, S.L.* ; Alzheimer's Disease Metabolomics Consortium (ADMC) (Kastenmüller, G.) ; Han, X.* ; Baillie, R.* ; Knight, R.* ; Dorrestein, P.* ; Brewer, J.* ; Mayer, E.* ; Labus, J.* ; Baldi, P.* ; Gupta, A.* ; Fiehn, O.* ; Barupal, D.* ; Meikle, P.* ; Mazmanian, S.* ; Rader, D.* ; Kling, M.* ; Shaw, L.* ; Trojanowski, J.* ; van Duijin, C.* ; Nevado-Holgado, A.* ; Bennett, D.* ; Krishnan, R.* ; Keshavarzian, A.* ; Vogt, R.* ; Ikram, A.* ; Hankemeier, T.* ; Price, N.* ; Funk, C.* ; Baloni, P.* ; Jia, W.* ; Wishart, D.* ; Brinton, R.* ; Chang, R.* ; Farrer, L.* ; Au, R.* ; Qiu, W.* ; Würtz, P.* ; Koal, T.* ; Mangravite, L.* ; Suhre, K.* ; Newman, J.* ; Moreno, H.* ; Foroud, T.* ; Sacks, F.* ; Jansson, J.* ; Weiner, M.W.* ; Aisen, P.* ; Petersen, R.* ; Jack, C.R.* ; Jagust, W.* ; Trojanowki, J.Q.* ; Toga, A.W.* ; Beckett, L.* ; Green, R.C.* ; Morris, J.C.* ; Perrin, R.J.* ; Shaw, L.M.* ; Khachaturian, Z.* ; Carrillo, M.* ; Potter, W.* ; Barnes, L.* ; Bernard, M.* ; Gonzalez, H.* ; Ho, C.* ; Hsiao, J.K.* ; Jackson, J.* ; Masliah, E.* ; Masterman, D.* ; Okonkwo, O.* ; Perrin, R.* ; Ryan, L.* ; Silverberg, N.* ; Fleisher, A.* ; Sacrey, D.T.* ; Fockler, J.* ; Conti, C.*
Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: Application to metabolome data.
EBioMedicine 97:104820 (2023)
Background: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. Methods: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. Findings: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). Interpretation: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation. Funding: The specific funding of this article is provided in the acknowledgements section.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Alzheimer's Disease ; Deep Learning ; Lipidomics ; Machine Learning ; Metabolomics; Neural-networks
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
2352-3964
e-ISSN
2352-3964
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 97,
Issue: ,
Pages: ,
Article Number: 104820
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam [u.a.]
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503891-001
Grants
NIA NIH HHS
Copyright
Erfassungsdatum
2023-10-18