as soon as is submitted to ZB.
Approaching Peak Ground Truth.
In: (Proceedings - International Symposium on Biomedical Imaging, 18-21 April 2023, Cartagena, Colombia). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 6 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the biomedical domain, annotations are subjective and suffer from low inter-and intra-rater reliability. Since annotations only reflect one interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, four categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Conference contribution
Keywords
Annotation ; Deep Learning ; Ground Truth ; Machine Learning ; Reference ; Segmentation; Label Noise; Classification
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
Conference Title
Proceedings - International Symposium on Biomedical Imaging
Conference Date
18-21 April 2023
Conference Location
Cartagena, Colombia
Quellenangaben
Volume: 2023-April,
Pages: 6
Publisher
Ieee
Publishing Place
345 E 47th St, New York, Ny 10017 Usa
Non-patent literature
Publications
Institute(s)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Grants
Helmut Horten Foundation
BMBF
DFG
ERC
Technical University of Munich - Institute for Advanced Study - German Excellence Initiative
Add-on Fellowship of the Joachim Herz Foundation
Helmholtz Association under the joint research school "Munich School for Data Science MUDS"
DComEX
Translational Brain Imaging Training Network (TRABIT) under the European Union's 'Horizon 2020' research & innovation program
Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE)
Helmut Horten Foundation
BMBF
DFG
ERC
Technical University of Munich - Institute for Advanced Study - German Excellence Initiative
Add-on Fellowship of the Joachim Herz Foundation
Helmholtz Association under the joint research school "Munich School for Data Science MUDS"
DComEX
Translational Brain Imaging Training Network (TRABIT) under the European Union's 'Horizon 2020' research & innovation program
Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE)