Liokatis, S.* ; Edlich, C.* ; Soupsana, K.* ; Giannios, I.* ; Panagiotidou, P.* ; Tripsianes, K. ; Sattler, M. ; Georgatos, S.D.* ; Politou, A.S.*
Solution structure and molecular interactions of lamin B receptor Tudor domain.
J. Biol. Chem. 287, 1032-1042 (2012)
Lamin B receptor (LBR) is a polytopic protein of the nuclear envelope thought to connect the inner nuclear membrane with the underlying nuclear lamina and peripheral heterochromatin. To better understand the function of this protein, we have examined in detail its nucleoplasmic region, which is predicted to harbor a Tudor domain (LBR-TD). Structural analysis by multidimensional NMR spectroscopy establishes that LBR-TD indeed adopts a classical β-barrel Tudor fold in solution, which, however, features an incomplete aromatic cage. Removal of LBR-TD renders LBR more mobile at the plane of the nuclear envelope, but the isolated module does not bind to nuclear lamins, heterochromatin proteins (MeCP2), and nucleosomes, nor does it associate with methylated Arg/Lys residues through its aromatic cage. Instead, LBR-TD exhibits tight and stoichiometric binding to the "histone-fold" region of unassembled, free histone H3, suggesting an interesting role in histone assembly. Consistent with such a role, robust binding to native nucleosomes is observed when LBR-TD is extended toward its carboxyl terminus, to include an area rich in Ser-Arg residues. The Ser-Arg region, alone or in combination with LBR-TD, binds both unassembled and assembled H3/H4 histones, suggesting that the TD/RS interface may operate as a "histone chaperone-like platform."
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
INNER NUCLEAR-MEMBRANE; HISTONE H3; PROTEIN LBR; ARGININE RESIDUES; NMR EXPERIMENTS; DNA-REPAIR; BINDING; RECOGNITION; ENVELOPE; SMN
Keywords plus
Language
english
Publication Year
2012
Prepublished in Year
2011
HGF-reported in Year
2011
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 287,
Issue: 2,
Pages: 1032-1042
Article Number: ,
Supplement: ,
Series
Publisher
American Society for Biochemistry and Molecular Biology
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503000-001
Grants
Copyright
Erfassungsdatum
2011-12-31