PuSH - Publication Server of Helmholtz Zentrum München

Gayoso, A.* ; Weiler, P. ; Lotfollahi, M. ; Klein, D. ; Hong, J.* ; Streets, A.* ; Theis, F.J. ; Yosef, N.*

Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells.

Nat. Methods 21, 50-59 (2024)
Publ. Version/Full Text DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
RNA velocity has been rapidly adopted to guide interpretation of transcriptional dynamics in snapshot single-cell data; however, current approaches for estimating RNA velocity lack effective strategies for quantifying uncertainty and determining the overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show that veloVI compares favorably to previous approaches with respect to goodness of fit, consistency across transcriptionally similar cells and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that veloVI’s posterior velocity uncertainty can be used to assess whether velocity analysis is appropriate for a given dataset. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
36.100
10.009
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2024
Prepublished in Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 1548-7091
e-ISSN 1548-7105
Journal Nature Methods
Quellenangaben Volume: 21, Issue: 1, Pages: 50-59 Article Number: , Supplement: ,
Publisher Nature Publishing Group
Publishing Place New York, NY
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-503800-001
Scopus ID 85171657347
PubMed ID 37735568
Erfassungsdatum 2023-10-18