Gupta, D.* ; Elwakiel, A.* ; Ranjan, S.* ; Pandey, M.K.* ; Krishnan, S.* ; Ambreen, S.* ; Henschler, R.* ; Rana, R.* ; Keller, M. ; Ceglarek, U.* ; Shahzad, K.* ; Kohli, S.* ; Isermann, B.*
     
    
        
Activated protein C modulates T-cell metabolism and epigenetic FOXP3 induction via α-ketoglutarate.
    
    
        
    
    
        
        Blood Adv. 7, 5055-5068 (2023)
    
    
    
      
      
	
	    A direct regulation of adaptive immunity by the coagulation protease activated protein C (aPC) has recently been established. Preincubation of T cells with aPC for 1 hour before transplantation increases FOXP3+ regulatory T cells (Tregs) and reduces acute graft-versushost disease (aGVHD) in mice, but the underlying mechanism remains unknown. Because cellular metabolism modulates epigenetic gene regulation and plasticity in T cells, we hypothesized that aPC promotes FOXP3+ expression by altering T-cell metabolism. To this end, T-cell differentiation was assessed in vitro using mixed lymphocyte reaction or plate-bound α-CD3/CD28 stimulation, and ex vivo using T cells isolated from mice with aGVHD without and with aPC preincubation, or analyses of mice with high plasma aPC levels. In stimulated CD4+CD25- cells, aPC induces FOXP3 expression while reducing expression of T helper type 1 cell markers. Increased FOXP3 expression is associated with altered epigenetic markers (reduced 5-methylcytosine and H3K27me3) and reduced Foxp3 promoter methylation and activity. These changes are linked to metabolic quiescence, decreased glucose and glutamine uptake, decreased mitochondrial metabolism (reduced tricarboxylic acid metabolites and mitochondrial membrane potential), and decreased intracellular glutamine and α-ketoglutarate levels. In mice with high aPC plasma levels, T-cell subpopulations in the thymus are not altered, reflecting normal T-cell development, whereas FOXP3 expression in splenic T cells is reduced. Glutamine and α-ketoglutarate substitution reverse aPC-mediated FOXP3+ induction and abolish aPC-mediated suppression of allogeneic T-cell stimulation. These findings show that aPC modulates cellular metabolism in T cells, reducing glutamine and α-ketoglutarate levels, which results in altered epigenetic markers, Foxp3 promoter demethylation and induction of FOXP3 expression, thus favoring a Treg-like phenotype.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Diabetic-nephropathy; Alpha-ketoglutarate; Glutamine Uptake; Expression; Responses; T(h)17
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2023
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2023
    
 
    
    
        ISSN (print) / ISBN
        2473-9529
    
 
    
        e-ISSN
        2473-9537
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 7,  
	    Issue: 17,  
	    Pages: 5055-5068 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            American Society of Hematology
        
 
        
            Publishing Place
            Washington, DC
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
    
 
    
        POF-Topic(s)
        30201 - Metabolic Health
    
 
    
        Research field(s)
        Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-506501-001
    
 
    
        Grants
        DAAD scholarship
Deutsche Forschungsgemeinschaft (German Research Foundation)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-18