PuSH - Publication Server of Helmholtz Zentrum München

Taubert, O.* ; von der Lehr, F.* ; Bazarova, A.* ; Faber, C.* ; Knechtges, P.* ; Weiel, M. ; Debus, C.* ; Coquelin, D.* ; Basermann, A.* ; Streit, A.* ; Kesselheim, S.* ; Götz, M.* ; Schug, A.*

RNA contact prediction by data efficient deep learning.

Comm. Biol. 6, 913 (2023)
Postprint DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps”) as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction.
Impact Factor
Scopus SNIP
Altmetric
5.900
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Direct-coupling Analysis; Secondary Structure; Protein; Sequence; Coverage
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 2399-3642
e-ISSN 2399-3642
Quellenangaben Volume: 6, Issue: 1, Pages: 913 Article Number: , Supplement: ,
Publisher Springer
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Helmholtz AI - DLR (HAI - DLR)
Helmholtz AI - FZJ (HAI - FZJ)
Helmholtz AI - KIT (HAI - KIT)
Grants HAICORE@KIT grant
Helmholtz AI platform
Helmholtz Association Initiative and Networking Fund
Scopus ID 85169792639
PubMed ID 37674020
Erfassungsdatum 2023-10-18