PuSH - Publication Server of Helmholtz Zentrum München

Wang, J.* ; Zhang, J.* ; Wu, J.* ; Huang, M.* ; Jia, L.* ; Li, L.* ; Zhang, Y.* ; Hu, H.* ; Liu, F.* ; Guan, Q.* ; Liu, M.* ; Adenusi, H.* ; Lin, H.* ; Passerini, S.*

Interfacial “Single-Atom-in-Defects” Catalysts Accelerating Li+ Desolvation Kinetics for Long-Lifespan Lithium-Metal Batteries.

Adv. Mater. 35 (2023)
Publ. Version/Full Text DOI
Open Access Hybrid
The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+, Li0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1−xS embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4 cathode, the full cell (10.7 mg cm−2) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications.
Impact Factor
Scopus SNIP
Altmetric
29.400
4.100
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Dendrite-free Lithium Plating ; In situ Sum Frequency Generation (sfg) ; Li-ion Desolvation ; Lithium-metal Batteries ; Single-atomic Catalysts
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 0935-9648
e-ISSN 1521-4095
Quellenangaben Volume: 35, Issue: 39 Pages: , Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Weinheim
Reviewing status Peer reviewed
Institute(s) Helmholtz AI - KIT (HAI - KIT)
Scopus ID 85166952666
Erfassungsdatum 2023-10-18