Gaggioli, V.* ; Lo, C.S.Y.* ; Reveron-Gomez, N.* ; Jasencakova, Z.* ; Domenech, H.* ; Nguyen, H.* ; Sidoli, S.* ; Tvardovskiy, A. ; Uruci, S.* ; Slotman, J.A.* ; Chai, Y.* ; Gonçalves, J.G.S.C.S.* ; Manolika, E.M.* ; Jensen, O.N.* ; Wheeler, D.* ; Sridharan, S.* ; Chakrabarty, S.* ; Demmers, J.* ; Kanaar, R.* ; Groth, A.* ; Taneja, N.*
Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability.
Nat. Cell Biol. 25, 1017-1032 (2023)
Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Oncogene-induced Senescence; Dna-damage Response; S-phase Checkpoint; Histone H3; Chromatin-structure; Methyltransferase G9a; Lysine 36; In-vitro; Methylation; Stress
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1465-7392
e-ISSN
1476-4679
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 25,
Issue: 7,
Pages: 1017-1032
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
Heidelberger Platz 3, Berlin, 14197, Germany
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-502800-001
Grants
European Research Council
Copyright
Erfassungsdatum
2023-10-18