PuSH - Publication Server of Helmholtz Zentrum München

Moser, C.* ; Gosselé, K.A.* ; Balaz, M.* ; Balázová, L.* ; Horvath, C.* ; Künzle, P.* ; Okreglicka, K.M.* ; Li, F.* ; Blüher, M. ; Stierstorfer, B.* ; Hess, E.* ; Lamla, T.* ; Hamilton, B.* ; Klein, H.* ; Neubauer, H.* ; Wolfrum, C.* ; Wolfrum, S.*

FAM3D: A gut secreted protein and its potential in the regulation of glucose metabolism.

Peptides 167:171047 (2023)
DOI PMC
Creative Commons Lizenzvertrag
Open Access Green as soon as Postprint is submitted to ZB.
The number of diabetic patients is rising globally and concomitantly so do the diabetes associated complications. The gut secretes a variety of proteins to control blood glucose levels and/or food intake. As the drug class of GLP-1 agonists is based on a gut secreted peptide and the positive metabolic effects of bariatric surgery are at least partially mediated by gut peptides, we were interested in other gut secreted proteins which have yet to be explored. In this respect we identified the gut secreted protein FAM3D by analyzing sequencing data from L- and epithelial cells of VSG and sham operated as well as chow and HFD fed mice. FAM3D was overexpressed in diet induced obese mice via an adeno-associated virus (AAV), which resulted in a significant improvement of fasting blood glucose levels, glucose tolerance and insulin sensitivity. The liver lipid deposition was reduced, and the steatosis morphology was improved. Hyperinsulinemic clamps indicated that FAM3D is a global insulin sensitizer and increases glucose uptake into various tissues. In conclusion, the current study demonstrated that FAM3D controls blood glucose levels by acting as an insulin sensitizing protein and improves hepatic lipid deposition.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Fam3 Family ; Glucose Metabolism ; Gut Secreted Proteins ; Insulin Sensitizer ; Type 2 Diabetes; Tyrosine Kinase Inhibitors; Type-2 Diabetes-mellitus; Insulin Sensitivity; Pathway; Drugs
ISSN (print) / ISBN 0196-9781
e-ISSN 1873-5169
Journal Peptides
Quellenangaben Volume: 167, Issue: , Pages: , Article Number: 171047 Supplement: ,
Publisher Elsevier
Publishing Place New York, NY
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
Grants SNF