PuSH - Publication Server of Helmholtz Zentrum München

Bhaskar, D.* ; MacDonald, K.* ; Fasina, O.* ; Thomas, D.* ; Rieck, B. ; Adelstein, I.* ; Krishnaswamy, S.*

Diffusion Curvature for Estimating Local Curvature in High Dimensional Data.

In: (Advances in Neural Information Processing Systems). 2022. (Advances in Neural Information Processing Systems ; 35)
Publ. Version/Full Text
Open Access Hybrid
We introduce a new intrinsic measure of local curvature on point-cloud data called diffusion curvature. Our measure uses the framework of diffusion maps, including the data diffusion operator, to structure point cloud data and define local curvature based on the laziness of a random walk starting at a point or region of the data. We show that this laziness directly relates to volume comparison results from Riemannian geometry. We then extend this scalar curvature notion to an entire quadratic form using neural network estimations based on the diffusion map of point-cloud data. We show applications of both estimations on toy data, single-cell data and on estimating local Hessian matrices of neural network loss landscapes.
Scopus
Cited By
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Conference contribution
Language english
Publication Year 2022
HGF-reported in Year 2022
ISSN (print) / ISBN 1049-5258
Conference Title Advances in Neural Information Processing Systems
Quellenangaben Volume: 35 Issue: , Pages: , Article Number: , Supplement: ,
Institute(s) Institute of AI for Health (AIH)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-540003-001
Scopus ID 85163150051
Erfassungsdatum 2023-10-18