Beagrie, R.A.* ; Thieme, C.J.* ; Annunziatella, C.* ; Baugher, C.* ; Zhang, Y.* ; Schueler, M.* ; Kukalev, A.* ; Kempfer, R.* ; Chiariello, A.M.* ; Bianco, S.* ; Li, Y.* ; Davis, T.* ; Scialdone, A. ; Welch, L.R.* ; Nicodemi, M.* ; Pombo, A.*
Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C.
Nat. Methods 20, 1037-1047 (2023)
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve ‘active’ regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain ‘inactive’ regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Rna-polymerase-ii; Organization; Reveals; Principles; Dynamics
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
1548-7091
e-ISSN
1548-7105
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 20,
Issue: 7,
Pages: 1037-1047
Article Number: ,
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
New York, NY
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30204 - Cell Programming and Repair
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Research field(s)
Stem Cell and Neuroscience
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP Element(s)
G-506290-001
G-502800-001
G-503800-001
Grants
NIDDK NIH HHS
Wellcome Trust
Copyright
Erfassungsdatum
2023-10-18