PuSH - Publication Server of Helmholtz Zentrum München

Hyams, Y.* ; Rubin-Blum, M.* ; Rosner, A.* ; Brodsky, L.* ; Rinkevich, Y. ; Rinkevich, B.*

Physiological changes during torpor favor association with Endozoicomonas endosymbionts in the urochordate Botrylloides leachii.

Front. Microbiol. 14:1072053 (2023)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Environmental perturbations evoke down-regulation of metabolism in some multicellular organisms, leading to dormancy, or torpor. Colonies of the urochordate Botrylloides leachii enter torpor in response to changes in seawater temperature and may survive for months as small vasculature remnants that lack feeding and reproductive organs but possess torpor-specific microbiota. Upon returning to milder conditions, the colonies rapidly restore their original morphology, cytology and functionality while harboring re-occurring microbiota, a phenomenon that has not been described in detail to date. Here we investigated the stability of B. leachii microbiome and its functionality in active and dormant colonies, using microscopy, qPCR, in situ hybridization, genomics and transcriptomics. A novel lineage of Endozoicomonas, proposed here as Candidatus Endozoicomonas endoleachii, was dominant in torpor animals (53–79% read abundance), and potentially occupied specific hemocytes found only in torpid animals. Functional analysis of the metagenome-assembled genome and genome-targeted transcriptomics revealed that Endozoicomonas can use various cellular substrates, like amino acids and sugars, potentially producing biotin and thiamine, but also expressing various features involved in autocatalytic symbiosis. Our study suggests that the microbiome can be linked to the metabolic and physiological states of the host, B. leachii, introducing a model organism for the study of symbioses during drastic physiological changes, such as torpor.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.200
0.000
1
1
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Aestivation ; Ascidians ; Endozoicomonas ; Hibernation ; Metabolism ; Symbiosis ; Torpor; Gut Microbiota; Bacterial Communities; Cyclic-peptides; Metabolism; Diversity; Insights; Genomes; System; Mechanisms; Ascidiacea
Language english
Publication Year 2023
HGF-reported in Year 2023
ISSN (print) / ISBN 1664-302X
e-ISSN 1664-302X
Quellenangaben Volume: 14, Issue: , Pages: , Article Number: 1072053 Supplement: ,
Publisher Frontiers
Publishing Place Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Reviewing status Peer reviewed
POF-Topic(s) 30202 - Environmental Health
Research field(s) Lung Research
PSP Element(s) G-554000-001
Scopus ID 85161987726
PubMed ID 37323901
Erfassungsdatum 2023-10-18