PuSH - Publication Server of Helmholtz Zentrum München

Nawroth, J. ; Giez, C.* ; Klimovich, A.* ; Kanso, E.* ; Bosch, T.C.G.*

Spontaneous body wall contractions stabilize the fluid microenvironment that shapes host-microbe associations.

eLife 12:23 (2023)
DOI PMC
Creative Commons Lizenzvertrag
Open Access Gold as soon as Publ. Version/Full Text is submitted to ZB.
The freshwater polyp Hydra is a popular biological model system; however, we still do not understand one of its most salient behaviors, the generation of spontaneous body wall contractions. Here, by applying experimental fluid dynamics analysis and mathematical modeling, we provide functional evidence that spontaneous contractions of body walls enhance the transport of chemical compounds from and to the tissue surface where symbiotic bacteria reside. Experimentally, a reduction in the frequency of spontaneous body wall contractions is associated with a changed composition of the colonizing microbiota. Together, our findings suggest that spontaneous body wall contractions create an important fluid transport mechanism that (1) may shape and stabilize specific host-microbe associations and (2) create fluid microhabitats that may modulate the spatial distribution of the colonizing microbes. This mechanism may be more broadly applicable to animal-microbe interactions since research has shown that rhythmic spontaneous contractions in the gastrointestinal tracts are essential for maintaining normal microbiota.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Hydra ; Bacteria ; Biophysics ; Diffusion ; Fluid Dynamics ; Microbe–host Association ; Physics Of Living Systems; Bacterial-growth; Hydra; Rethinking; Jellyfish; Immunity; Platform; Muscle; Flow
ISSN (print) / ISBN 2050-084X
e-ISSN 2050-084X
Journal eLife
Quellenangaben Volume: 12, Issue: , Pages: , Article Number: 23 Supplement: ,
Publisher eLife Sciences Publications
Publishing Place Sheraton House, Castle Park, Cambridge, Cb3 0ax, England
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Helmholtz Pioneer Campus (HPC)
Institute of Biological and Medical Imaging (IBMI)
Grants National Science Foundation RAISE grant
National Science Foundation INSPIRE grant
National Institutes of Health
Deutsche Forschungsgemeinschaft