Meindl, K.* ; Issler, N.* ; Afonso, S.* ; Cebrian Serrano, A. ; Müller, K.* ; Sterner, C.* ; Othmen, H.* ; Tegtmeier, I.* ; Witzgall, R.* ; Klootwijk, E.* ; Davies, B.* ; Kleta, R.* ; Warth, R.*
     
    
        
A missense mutation in Ehd1 associated with defective spermatogenesis and male infertility.
    
    
        
    
    
        
        Front. Cell Dev. Biol. 11:1240558 (2023)
    
    
    
      
      
	
	    Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.R398W) of EHD1 in patients who had low molecular weight proteinuria (0.7-2.1 g/d) and high-frequency hearing loss. It was already known from Ehd1 knockout mice that inactivation of Ehd1 can lead to male infertility. However, the exact role of the EHD1 protein and its p.R398W mutant during spermatogenesis remained still unclear. Here, we report the testicular phenotype of a knockin mouse model carrying the p.R398W mutation in the EHD1 protein. Male homozygous knockin mice were infertile, whereas the mutation had no effect on female fertility. Testes and epididymes were significantly reduced in size and weight. The testicular epithelium appeared profoundly damaged and had a disorganized architecture. The composition of developing cell types was altered. Malformed acrosomes covered underdeveloped and misshaped sperm heads. In the sperm tail, midpieces were largely missing indicating disturbed assembly of the sperm tail. Defective structures, i.e., nuclei, acrosomes, and sperm tail midpieces, were observed in large vacuoles scattered throughout the epithelium. Interestingly, cilia formation itself did not appear to be affected, as the axoneme and other parts of the sperm tails except the midpieces appeared to be intact. In wildtype mice, EHD1 co-localized with acrosomal granules on round spermatids, suggesting a role of the EHD1 protein during acrosomal development. Wildtype EHD1 also co-localized with the VPS35 component of the retromer complex, whereas the p.R398W mutant did not. The testicular pathologies appeared very early during the first spermatogenic wave in young mice (starting at 14 dpp) and tubular destruction worsened with age. Taken together, EHD1 plays an important and probably multifaceted role in spermatogenesis in mice. Therefore, EHD1 may also be a hitherto underestimated infertility gene in humans.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Ciliogenesis ; Endocytosis ; Genetic Disease ; Retromer ; Sperm ; Testis; Retromer; Membrane; Endosome; Protein; Golgi; Expression; Cycle
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2023
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2023
    
 
    
    
        ISSN (print) / ISBN
        2296-634X
    
 
    
        e-ISSN
        2296-634X
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 11,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: 1240558 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Frontiers
        
 
        
            Publishing Place
            Lausanne
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30201 - Metabolic Health
    
 
    
        Research field(s)
        Helmholtz Diabetes Center
    
 
    
        PSP Element(s)
        G-502200-001
    
 
    
        Grants
        University of Regensburg
St Peter's Trust for Kidney, Bladder, and Prostate Research
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
509149993 (TRR 374). EK was supported by St Peter's Trust for Kidney, Bladder, and Prostate Research. University of Regensburg supp
RWi and RWa were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummern 471535567
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-11-28