Wang, D. ; Rausch, C.* ; Buerger, S.A.* ; Tschuri, S.* ; Rothenberg-Thurley, M.* ; Schulz, M. ; Hasenauer, J. ; Ziemann, F.* ; Metzeler, K.H.* ; Marr, C.
Modeling early treatment response in AML from cell-free tumor DNA.
iScience 26:108271 (2023)
Monitoring disease response after intensive chemotherapy for acute myeloid leukemia (AML) currently requires invasive bone marrow biopsies, imposing a significant burden on patients. In contrast, cell-free tumor DNA (ctDNA) in peripheral blood, carrying tumor-specific mutations, offers a less-invasive assessment of residual disease. However, the relationship between ctDNA levels and bone marrow blast kinetics remains unclear. We explored this in 10 AML patients with NPM1 and IDH2 mutations undergoing initial chemotherapy. Comparison of mathematical mixed-effect models showed that (1) inclusion of blast cell death in the bone marrow, (2) transition of ctDNA to peripheral blood, and (3) ctDNA decay in peripheral blood describes kinetics of blast cells and ctDNA best. The fitted model allows prediction of residual bone marrow blast content from ctDNA, and its scaling factor, representing clonal heterogeneity, correlates with relapse risk. Our study provides precise insights into blast and ctDNA kinetics, offering novel avenues for AML disease monitoring.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Biological Sciences ; Disease; Acute Myeloid-leukemia; Residual Disease; Chemotherapy; Mutations; Evolution; Diagnosis; Relapse; Risk
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
2589-0042
e-ISSN
2589-0042
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 26,
Issue: 12,
Pages: ,
Article Number: 108271
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-540007-001
G-553800-001
Grants
European Research Council (ERC)
China Scholarship Council
Copyright
Erfassungsdatum
2023-11-28