PuSH - Publication Server of Helmholtz Zentrum München

Bercea, C.-I. ; Wiestler, B.* ; Rueckert, D.* ; Schnabel, J.A.

Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection.

In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2023). Berlin [u.a.]: Springer, 2023. 293-303 (Lect. Notes Comput. Sc. ; 14224 LNCS)
DOI
Early and accurate disease detection is crucial for patient management and successful treatment outcomes. However, the automatic identification of anomalies in medical images can be challenging. Conventional methods rely on large labeled datasets which are difficult to obtain. To overcome these limitations, we introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly Segmentation). Our method has the capability of reversing anomalies, i.e., preserving healthy tissue and replacing anomalous regions with pseudo-healthy (PH) reconstructions. Unlike recent diffusion models, our method does not rely on a learned noise distribution nor does it introduce random alterations to the entire image. Instead, we use latent generative networks to create masks around possible anomalies, which are refined using inpainting generative networks. We demonstrate the effectiveness of PHANES in detecting stroke lesions in T1w brain MRI datasets and show significant improvements over state-of-the-art (SOTA) methods. We believe that our proposed framework will open new avenues for interpretable, fast, and accurate anomaly segmentation with the potential to support various clinical-oriented downstream tasks. Code: https://github.com/ci-ber/PHANES
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Conference contribution
Corresponding Author
Keywords Generative Networks ; Unsupervised Anomaly Detection
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Conference Title Medical Image Computing and Computer Assisted Intervention – MICCAI 2023
Quellenangaben Volume: 14224 LNCS, Issue: , Pages: 293-303 Article Number: , Supplement: ,
Publisher Springer
Publishing Place Berlin [u.a.]
Non-patent literature Publications
Institute(s) Institute for Machine Learning in Biomed Imaging (IML)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Grants Helmholtz Association under the joint research school "Munich School for Data Science -MUDS"