PuSH - Publication Server of Helmholtz Zentrum München

Renström, F.* ; Shungin, D.* ; Johansson, I* ; MAGIC Investigators (Grallert, H. ; Gieger, C. ; Meisinger, C. ; Thorand, B. ; Wichmann, H.-E. ; Illig, T.) ; Florez, J.C* ; Hallmans, G.* ; Hu, F.B.* ; Franks, P.W.*

Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: Ten-year follow-up of the GLACIER study.

Diabetes 60, 345-354 (2011)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
OBJECTIVE: To assess whether recently discovered genetic loci associated with hyperglycemia also predict long-term changes in glycemic traits. RESEARCH DESIGN AND METHODS: Sixteen fasting glucose-raising loci were genotyped in middle-aged adults from the Gene x Lifestyle interactions And Complex traits Involved in Elevated disease Risk (GLACIER) Study, a population-based prospective cohort study from northern Sweden. Genotypes were tested for association with baseline fasting and 2-h postchallenge glycemia (N = 16,330), and for changes in these glycemic traits during a 10-year follow-up period (N = 4,059).RESULTS: Cross-sectional directionally consistent replication with fasting glucose concentrations was achieved for 12 of 16 variants; 10 variants were also associated with impaired fasting glucose (IFG) and 7 were independently associated with 2-h postchallenge glucose concentrations. In prospective analyses, the effect alleles at four loci (GCK rs4607517, ADRA2A rs10885122, DGKB-TMEM195 rs2191349, and G6PC2 rs560887) were nominally associated with worsening fasting glucose concentrations during 10-years of follow-up. MTNR1B rs10830963, which was predictive of elevated fasting glucose concentrations in cross-sectional analyses, was associated with a protective effect on postchallenge glucose concentrations during follow-up; however, this was only when baseline fasting and 2-h glucoses were adjusted for. An additive effect of multiple risk alleles on glycemic traits was observed: a weighted genetic risk score (80th vs. 20th centiles) was associated with a 0.16 mmol/l (P = 2.4 × 10⁻⁶) greater elevation in fasting glucose and a 64% (95% CI: 33-201%) higher risk of developing IFG during 10 years of follow-up. CONCLUSIONS: Our findings imply that genetic profiling might facilitate the early detection of persons who are genetically susceptible to deteriorating glucose control; studies of incident type 2 diabetes and discrete cardiovascular end points will help establish whether the magnitude of these changes is clinically relevant.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Genome-Wide Association; Type-2 diabetes risk; Impaired fasting glucose; Melatonin-receptor; Northern Sweden; Popurlation; Variants; Insulin; Polymorphism; Mellitus
ISSN (print) / ISBN 0012-1797
e-ISSN 1939-327X
Journal Diabetes
Quellenangaben Volume: 60, Issue: 1, Pages: 345-354 Article Number: , Supplement: ,
Publisher American Diabetes Association
Publishing Place Alexandria, VA.
Non-patent literature Publications
Reviewing status Peer reviewed