Zahn, G.* ; Baukmann, H.A.* ; Wu, J.* ; Jordan, J.* ; Birkenfeld, A.L. ; Dirckx, N.* ; Schmidt, M.F.*
Targeting longevity gene SLC13A5: A novel approach to prevent age-related bone fragility and osteoporosis.
Metabolites 13:1186 (2023)
Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Mendelian Randomization ; Nact ; Slc13a5 ; Citrate ; Citrate Transporter ; Drug Development ; Mindy ; Osteoporosis; Plasma Citrate; Mouse Model; Nact; Transporter; Association; Mutations; Insulin
Keywords plus
Language
english
Publication Year
2023
Prepublished in Year
0
HGF-reported in Year
2023
ISSN (print) / ISBN
2218-1989
e-ISSN
2218-1989
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 13,
Issue: 12,
Pages: ,
Article Number: 1186
Supplement: ,
Series
Publisher
MDPI
Publishing Place
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-502400-001
Grants
Eternygen GmbH
Copyright
Erfassungsdatum
2024-01-09