PuSH - Publication Server of Helmholtz Zentrum München

Yu, Y.* ; Gawlitt, S.* ; Barros De Andrade E Sousa, L. ; Merdivan, E. ; Piraud, M. ; Beisel, C.L.* ; Barquist, L.*

Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration.

Genome Biol. 25:13 (2024)
Publ. Version/Full Text DOI PMC
Creative Commons Lizenzvertrag
CRISPR interference (CRISPRi) is the leading technique to silence gene expression in bacteria; however, design rules remain poorly defined. We develop a best-in-class prediction algorithm for guide silencing efficiency by systematically investigating factors influencing guide depletion in genome-wide essentiality screens, with the surprising discovery that gene-specific features substantially impact prediction. We develop a mixed-effect random forest regression model that provides better estimates of guide efficiency. We further apply methods from explainable AI to extract interpretable design rules from the model. This study provides a blueprint for predictive models for CRISPR technologies where only indirect measurements of guide activity are available.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Gene; Design; Sgrnas
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 25, Issue: 1, Pages: , Article Number: 13 Supplement: ,
Publisher BioMed Central
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst