PuSH - Publication Server of Helmholtz Zentrum München

Yu, Y.* ; Gawlitt, S.* ; Barros De Andrade E Sousa, L. ; Merdivan, E. ; Piraud, M. ; Beisel, C.L.* ; Barquist, L.*

Improved prediction of bacterial CRISPRi guide efficiency from depletion screens through mixed-effect machine learning and data integration.

Genome Biol. 25:13 (2024)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
CRISPR interference (CRISPRi) is the leading technique to silence gene expression in bacteria; however, design rules remain poorly defined. We develop a best-in-class prediction algorithm for guide silencing efficiency by systematically investigating factors influencing guide depletion in genome-wide essentiality screens, with the surprising discovery that gene-specific features substantially impact prediction. We develop a mixed-effect random forest regression model that provides better estimates of guide efficiency. We further apply methods from explainable AI to extract interpretable design rules from the model. This study provides a blueprint for predictive models for CRISPR technologies where only indirect measurements of guide activity are available.
Impact Factor
Scopus SNIP
Altmetric
10.100
3.476
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Gene; Design; Sgrnas
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 25, Issue: 1, Pages: , Article Number: 13 Supplement: ,
Publisher BioMed Central
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-530001-001
Grants Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Scopus ID 85181900974
PubMed ID 38200565
Erfassungsdatum 2024-01-16