PuSH - Publication Server of Helmholtz Zentrum München

Behr, J.H.* ; Kuhl-Nagel, T.* ; Sommermann, L.* ; Moradtalab, N.* ; Chowdhury, S.P. ; Schloter, M. ; Windisch, S.* ; Schellenberg, I.* ; Maccario, L.* ; Sörensen, S.J.* ; Rothballer, M. ; Geistlinger, J.* ; Smalla, K.* ; Ludewig, U.* ; Neumann, G.* ; Grosch, R.* ; Babin, D.*

Long-term conservation tillage with reduced nitrogen fertilization intensity can improve winter wheat health via positive plant-microorganism feedback in the rhizosphere.

FEMS Microbiol. Ecol. 100:fiae003 (2024)
DOI PMC
Creative Commons Lizenzvertrag
Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates, leaf metabolites and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords 16s Rrna Gene ; Its Illumina Amplicon Sequencing ; Mineral Fertilization ; Root Exudates ; Shotgun Metagenome Sequencing ; Sustainable Agriculture; Gene-expression; Resistance; Roots; Microbiome; Stress; Growth; Trichoderma; Arabidopsis; Communities; Trehalose
ISSN (print) / ISBN 0168-6496
e-ISSN 1574-6941
Quellenangaben Volume: 100, Issue: 2, Pages: , Article Number: fiae003 Supplement: ,
Publisher Wiley
Publishing Place Oxford
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Institute of Network Biology (INET)
Research Unit Comparative Microbiome Analysis (COMI)
Grants German Federal Ministry of Education and Research (BMBF, Germany)