PuSH - Publication Server of Helmholtz Zentrum München

Furusawa, T.* ; Cavero, R.* ; Liu, Y.* ; Li, H.* ; Xu, X.* ; Andresson, T.* ; Reinhold, W.C.* ; White, O.* ; Boufraqech, M.* ; Meyer, T.J.* ; Hartmann, O. ; Diefenbacher, M. ; Pommier, Y.* ; Weyemi, U.*

Metabolism-focused CRISPR screen unveils mitochondrial pyruvate carrier 1 as a critical driver for PARP inhibitor resistance in lung cancer.

Mol. Carcinog. 63, 1024-1037 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Crispr Screen ; Dna Damage Response ; Nsclc ; Parp Inhibitor ; Breast Cancer ; Metabolism
ISSN (print) / ISBN 0899-1987
e-ISSN 1098-2744
Quellenangaben Volume: 63, Issue: 6, Pages: 1024-1037 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place 111 River St, Hoboken 07030-5774, Nj Usa
Non-patent literature Publications
Reviewing status Peer reviewed
Grants NCI NIH HHS