PuSH - Publication Server of Helmholtz Zentrum München

Kecorius, S. ; Madueno, L.* ; Sues, S. ; Cyrys, J. ; Lovrić, M.* ; Pöhlker, M.* ; Plauškaite, K.* ; Davulienė, L.* ; Minderytė, A.* ; Byčenkiene, S.*

Development of a cost-effective adsorption dryer for high-quality aerosol sampling.

Aerosol Air Qual. Res. 24:230057 (2024)
DOI
Creative Commons Lizenzvertrag
Due to their affinity to water, physical-chemical properties of aerosol particles depend highly on the ambient relative humidity (RH). Aerosol drying below 40% RH is recommended to minimize measurement artifacts, increase data quality, and make results from different environments comparable. Diffusion dryers (DD) are one of the most frequently used tools to lower RH in sampled air. This work presents a custom-built DD, its design, construction, and application. By using readily available materials and 3D printing, we were able to manufacture a high-quality, cost-effective DD that can be used in various measurement scenarios (e.g., long-term measurements, intensive field campaigns, laboratory studies, and applications with low-cost sensors). The DD is equipped with ports for desiccant regeneration using clean and dry air, eliminating the need for desiccant removal from the dryer. The field tests of the proposed DD showed that it could reduce RH from ambient 65% to < 5 and 15% at flow rates of 2.5 and 8.0 L min–1, respectively. The transmission efficiency (TE) of 10–20 nm and > 20 nm aerosol particles is between 60–80% and > 80%, respectively. The presented DD is easily scalable, thus, can be adapted for multiple applications at a low cost without compromising the data quality.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Aerosol Drying ; Aerosol Measurement ; Atmospheric Aerosol Particles ; Data Quality Assurance ; Diffusion Dryer; Conductive Filament; Particles; Performance; Station; Design
ISSN (print) / ISBN 1680-8584
e-ISSN 2071-1409
Quellenangaben Volume: 24, Issue: 3, Pages: , Article Number: 230057 Supplement: ,
Publisher Tainan
Publishing Place Chaoyang Univ Tech, Dept Env Eng & Mgmt, Prod Ctr Aaqr, No 168, Jifong E Rd, Wufong Township, Taichung County, 41349, Taiwan
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Environmental Science Center, Augsburg University for the access to the environmental measurement station in Augsburg, Germany
Augsburg University of Applied Sciences, Helmholtz Zentrum Muenchen (German Research Center for Environmental Health, Munich)
Open Access Fund of the Leibniz Association
Research Council of Lithuania (LMTLT)