Yamada, N. ; Karasawa, T.* ; Ito, J.* ; Yamamuro, D.* ; Morimoto, K.* ; Nakamura, T. ; Komada, T.* ; Baatarjav, C.* ; Saimoto, Y.* ; Jinnouchi, Y.* ; Watanabe, K.* ; Miura, K.* ; Yahagi, N.* ; Nakagawa, K.* ; Matsumura, T.* ; Yamada, K.i.* ; Ishibashi, S.* ; Sata, N.* ; Conrad, M. ; Takahashi, M.*
Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis.
Nat. Commun. 15:2195 (2024)
Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increases its substrate, 7-dehydrocholesterol (7-DHC). Furthermore, exogenous 7-DHC supplementation using hydroxypropyl β-cyclodextrin suppresses ferroptosis. A 7-DHC-derived oxysterol metabolite, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), is increased by the ferroptosis-inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition is associated with the oxidation of 7-DHC. Electron spin resonance analysis reveals that 7-DHC functions as a radical trapping agent, thus protecting cells from ferroptosis. We further show that AY9944 inhibits hepatic ischemia-reperfusion injury, and genetic ablation of Dhcr7 prevents acetaminophen-induced acute liver failure in mice. These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest a potential therapeutic option for ferroptosis-related liver diseases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Lemli-opitz-syndrome; Reperfusion Injury; Lipid-metabolism; Cholesterol; Ischemia; Contributes; Oxysterols; Dhcr7
Keywords plus
Language
english
Publication Year
2024
Prepublished in Year
0
HGF-reported in Year
2024
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 15,
Issue: 1,
Pages: ,
Article Number: 2195
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Genetics and Epidemiology
PSP Element(s)
G-506900-001
Grants
Takeda Science Foundation
Smoking Research Foundation in Japan
Japan Society for Organ Preservation and Biology
Hitachi Global Foundation
AMED-CREST grant
Japan Society for the Promotion of Science (JSPS)
Copyright
Erfassungsdatum
2024-05-08