Ester-Nacke, T. ; Berti, K. ; Veit, R. ; Dannecker, C. ; Salvador, R.* ; Ruffini, G.* ; Heni, M. ; Birkenfeld, A.L. ; Plewnia, C.* ; Preissl, H. ; Kullmann, S.
Network-targeted transcranial direct current stimulation of the hypothalamus appetite-control network: A feasibility study.
Sci. Rep. 14:11341 (2024)
The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
State Functional Connectivity; Cognitive Control; Inhibitory Control; Brain; Tdcs; Excitability; Metaanalysis; Responses; Weight; Cortex
Keywords plus
Language
english
Publication Year
2024
Prepublished in Year
0
HGF-reported in Year
2024
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 14,
Issue: 1,
Pages: ,
Article Number: 11341
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
90000 - German Center for Diabetes Research
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-502400-001
Grants
Projekt DEAL
Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2024-06-11