Open Access Green: Postprint online available 07/2025
as soon as is submitted to ZB.
Accessing the low-polar molecular composition of boreal and arctic peat-burning organic aerosol via thermal analysis and ultrahigh-resolution mass spectrometry: Structural motifs and their formation.
J. Am. Soc. Mass Spectrom., DOI: 10.1021/jasms.4c00120 (2024)
Peatland fires emit organic carbon-rich particulate matter into the atmosphere. Boreal and Arctic peatlands are becoming more vulnerable to wildfires, resulting in a need for better understanding of the emissions of these special fires. Extractable, nonpolar, and low-polar organic aerosol species emitted from laboratory-based boreal and Arctic peat-burning experiments are analyzed by direct-infusion atmospheric pressure photoionization (APPI) ultrahigh-resolution mass spectrometry (UHRMS) and compared to time-resolved APPI UHRMS evolved gas analysis from the thermal analysis of peat under inert nitrogen (pyrolysis) and oxidative atmosphere. The chemical composition is characterized on a molecular level, revealing abundant aromatic compounds that partially contain oxygen, nitrogen, or sulfur and are formed at characteristic temperatures. Two main structural motifs are identified, single core and multicore, and their temperature-dependent formation is assigned to the thermal degradation of the lignocellulose building blocks and other parts of peat.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Infrared Multiphoton Dissociation (irmpd) ; Organic Aerosol ; Peat Burning ; Structural Motifs ; Thermal Analysis ; Ultrahigh-resolution Mass Spectrometry; Polycyclic Aromatic-hydrocarbons; Ionization; Emissions; Nitrogen; Lignin; Fires; Asphaltenes; Combustion; Fractions; Reveals
e-ISSN
1044-0305
Publisher
Elsevier
Publishing Place
1155 16th St, Nw, Washington, Dc 20036 Usa
Non-patent literature
Publications
Reviewing status
Peer reviewed
Grants
Research Council of Finland
Bruker FT-ICR MS
Helmholtz Association (HGF) by the Helmholtz International Laboratory
State of Florida
National Science Foundation Division of Chemistry and Division of Material Research
German Research Foundation (DFG)
Bruker FT-ICR MS
Helmholtz Association (HGF) by the Helmholtz International Laboratory
State of Florida
National Science Foundation Division of Chemistry and Division of Material Research
German Research Foundation (DFG)