PuSH - Publication Server of Helmholtz Zentrum München

Schwarz, T.M.* ; Leicht, S.F.* ; Radic, T.* ; Rodriguez-Araboalaza, I.* ; Hermann, P.C.* ; Berger, F.* ; Saif, J.* ; Böcker, W.* ; Ellwart, J.W. ; Aicher, A.* ; Heeschen, C.*

Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy.

Arterioscler. Thromb. Vasc. Biol. 32, E13-E21 (2012)
Publ. Version/Full Text Volltext DOI PMC
Closed
Open Access Green as soon as Postprint is submitted to ZB.
OBJECTIVE: Cord blood-derived human endothelial colony-forming cells (ECFCs) bear a high proliferative capacity and potently enhance tissue neovascularization in vivo. Here, we investigated whether the leading mechanism for the functional improvement relates to their physical vascular incorporation or perivascular paracrine effects and whether the effects can be further enhanced by dual-cell-based therapy, including mesenchymal stem cells (MSCs). METHODS AND RESULTS: ECFCs or MSCs were lentivirally transduced with thymidine kinase suicide gene driven by the endothelial-specific vascular endothelial growth factor 2 (kinase insert domain receptor) promoter and evaluated in a hindlimb ischemia model. ECFCs and MSCs enhanced neovascularization after ischemic events to a similar extent. Dual therapy using ECFCs and MSCs further enhanced neovascularization. Mechanistically, 3 weeks after induction of ischemia followed by cell therapy, ganciclovir-mediated elimination of kinase insert domain receptor(+) cells completely reversed the therapeutic effect of ECFCs but not that of MSCs. Histological analysis revealed that ganciclovir effectively eliminated ECFCs incorporated into the vasculature. CONCLUSIONS: Endothelial-specific suicide gene technology demonstrates distinct mechanisms for ECFCs and MSCs, with complete abolishment of ECFC-mediated effects, whereas MSC-mediated effects remained unaffected. These data strengthen the notion that a dual-cell-based therapy represents a promising approach for vascular regeneration of ischemic tissue.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.368
1.767
81
92
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords angiogenesis; coronary heart disease; endothelium; ischemia; peripheral arterial disease
Language english
Publication Year 2012
HGF-reported in Year 2012
ISSN (print) / ISBN 1079-5642
e-ISSN 1524-4636
Quellenangaben Volume: 32, Issue: 2, Pages: E13-E21 Article Number: , Supplement: ,
Publisher Lippincott Williams & Wilkins
Reviewing status Peer reviewed
POF-Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Research field(s) Immune Response and Infection
PSP Element(s) G-501793-001
PubMed ID 22199368
Erfassungsdatum 2012-03-21