PuSH - Publication Server of Helmholtz Zentrum München

Sorek, G.* ; Haim, Y.* ; Chalifa-Caspi, V.* ; Lazarescu, O.* ; Ziv-Agam, M.* ; Hagemann, T. ; Nono Nankam, P.A. ; Blüher, M. ; Liberty, I.F.* ; Dukhno, O.* ; Kukeev, I.* ; Yeger-Lotem, E.* ; Rudich, A.* ; Levin, L.*

sNucConv: A bulk RNA-seq deconvolution method trained on single-nucleus RNA-seq data to estimate cell-type composition of human adipose tissues.

iScience 27:110368 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Deconvolution algorithms mostly rely on single-cell RNA-sequencing (scRNA-seq) data applied onto bulk RNA-sequencing (bulk RNA-seq) to estimate tissues’ cell-type composition, with performance accuracy validated on deposited databases. Adipose tissues’ cellular composition is highly variable, and adipocytes can only be captured by single-nucleus RNA-sequencing (snRNA-seq). Here we report the development of sNucConv, a Scaden deep-learning-based deconvolution tool, trained using 5 hSAT and 7 hVAT snRNA-seq-based data corrected by (i) snRNA-seq/bulk RNA-seq highly correlated genes and (ii) individual cell-type regression models. Applying sNucConv on our bulk RNA-seq data resulted in cell-type proportion estimation of 15 and 13 cell types, with accuracy of R = 0.93 (range: 0.76–0.97) and R = 0.95 (range: 0.92–0.98) for hVAT and hSAT, respectively. This performance level was further validated on an independent set of samples (5 hSAT; 5 hVAT). The resulting model was depot specific, reflecting depot differences in gene expression patterns. Jointly, sNucConv provides proof-of-concept for producing validated deconvolution models for tissues un-amenable to scRNA-seq.
Impact Factor
Scopus SNIP
Altmetric
4.600
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Biocomputational Method ; Classification Of Bioinformatical Subject ; Integrative Aspects Of Cell Biology ; Machine Learning ; Transcriptomics; Obesity; Inflammation; Genes
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 2589-0042
e-ISSN 2589-0042
Journal iScience
Quellenangaben Volume: 27, Issue: 7, Pages: , Article Number: 110368 Supplement: ,
Publisher Elsevier
Publishing Place Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF-Topic(s) 30201 - Metabolic Health
Research field(s) Helmholtz Diabetes Center
PSP Element(s) G-506501-001
Grants Israel Science Foundation
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Chan Zuckerberg Initiative Foundation
Scopus ID 85197515001
PubMed ID 39071890
Erfassungsdatum 2024-07-17