UNLABELLED: Staphylococcus aureus strains exhibit varying associations with atopic dermatitis (AD), but the genetic determinants underpinning the pathogenicity are yet to be fully characterized. To reveal the genetic differences between S. aureus strains from AD patients and healthy individuals (HE), we developed and employed a random forest classifier to identify potential marker genes responsible for their phenotypic variations. The classifier was able to effectively distinguish strains from AD and HE. We also uncovered strong links between certain marker genes and phage functionalities, with phage holin emerging as the most pivotal differentiating factor. Further examination of S. aureus gene content highlighted the genetic diversity and functional implications of prophages in driving differentiation between strains from AD and HE. The HE group exhibited greater gene content diversity, largely influenced by their prophages. While strains from both AD and HE universally housed prophages, those in the HE group were distinctively higher at the strain level. Moreover, although prophages in the HE group exhibited variously higher enrichment of differential functions, the AD group displayed a notable enrichment of virulence factors within their prophages, underscoring the important contribution of prophages to the pathogenesis of AD-associated strains. Overall, prophages significantly shape the genetic and functional profiles of S. aureus strains, shedding light on their pathogenic potential and elucidating the mechanisms behind the phenotypic variations in AD and HE environments. IMPORTANCE: Through a nuanced exploration of Staphylococcus aureus strains obtained from atopic dermatitis (AD) patients and healthy controls (HE), our research unveils pivotal genetic determinants influencing their pathogenic associations. Utilizing a random forest classifier, we illuminate distinct marker genes, with phage holin emerging as a critical differential factor, revealing the profound impact of prophages on genetic and pathogenic profiles. HE strains exhibited a diverse gene content, notably shaped by unique, heightened prophages. Conversely, AD strains emphasized a pronounced enrichment of virulence factors within prophages, signifying their key role in AD pathogenesis. This work crucially highlights prophages as central architects of the genetic and functional attributes of S. aureus strains, providing vital insights into pathogenic mechanisms and phenotypic variations, thereby paving the way for targeted AD therapeutic approaches and management strategies by demystifying specific genetic and pathogenic mechanisms.