Mainz, A. ; Bardiaux, B.* ; Kuppler, F.* ; Multhaup, G.* ; Felli, I.C.* ; Pierattelli, R.* ; Reif, B.
Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin.
J. Biol. Chem. 287, 1128-1138 (2012)
The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of chaperone function using NMR spectroscopy and other biophysical approaches. We show that the α-crystallin domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion with picomolar binding affinity. Putative Cu(II) ligands are His(83), His(104), His(111), and Asp(109) at the dimer interface. These loop residues are conserved among different metazoans, but also for human αA-crystallin, HSP20, and HSP27. The involvement of Asp(109) has direct implications for dimer stability, because this residue forms a salt bridge with the disease-related Arg(120) of the neighboring monomer. Furthermore, we observe structural reorganization of strands β2-β3 triggered by Cu(II) binding. This N-terminal region is known to mediate both the intermolecular arrangement in αB oligomers and the binding of client proteins. In the presence of Cu(II), the size and the heterogeneity of αB multimers are increased. At the same time, Cu(II) increases the chaperone activity of αB toward the lens-specific protein β(L)-crystallin. We therefore suggest that Cu(II) binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher order assemblies of αB.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Chaperone-like activity; Zinc superoxide-dismutase; Desmin-related myopathy; N-terminal domain; Solid-state NMR; Molecular chaperone; Complete assignment; Oxidative stress; Protonless NMR; Spectroscopy
Keywords plus
Language
Publication Year
2012
Prepublished in Year
HGF-reported in Year
2012
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 287,
Issue: 2,
Pages: 1128-1138
Article Number: ,
Supplement: ,
Series
Publisher
American Society for Biochemistry and Molecular Biology
Publishing Place
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
30505 - New Technologies for Biomedical Discoveries
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-503090-001
G-503000-004
Grants
Copyright
Erfassungsdatum
2012-02-24