A novel latex patch model enables cost-effective hands-on teaching in vascular surgery.
Surg. Open Sci. 20, 194-202 (2024)
Objectives: We developed a new simulator for hands-on teaching of vascular surgical skills, the Leipzig Latex Patch Model (LPM). This study aimed to quantify the effectiveness and acceptance of the LPM evaluated by students, as well as evaluation of the results by experienced vascular surgeons. Methods: A prospective, single-center, single-blinded, randomized study was conducted. Fifty 5th-year medical students were randomized into two groups, first performing a patch suture on the LPM (study group) or established synthetic tissue model (control), then on porcine aorta. The second suture was videotaped and scored by two surgeons using a modified Objective Structured Assessment of Technical Skill (OSATS) score. We measured the time required for suturing; the participants completed questionnaires. Results: Participants required significantly less time for the second suture than the first (median: LPM 30 min vs. control 28.5 min, p = 0.0026). There was no significant difference in suture time between the groups (median: 28 min vs. 30 min, p = 0.2958). There was an increase in confidence from 28 % of participants before to 58 % after the course (p < 0.0001). The cost of materials per participant was 1.05€ (LPM) vs. 8.68€ (control). The OSATS-scores of the LPM group did not differ significantly from those of the control (median: 20.5 points vs. 23.0 points, p = 0.2041). Conclusions: This pilot study demonstrated an increase in technical skills and confidence through simulator-based teaching. Our data suggests comparable results of the LPM compared to the conventional model, as assessed by the OSATS-score. This low-cost, low-threshold training model for vascular suturing skills should make hands-on training more accessible to students and surgical residents. Key message: We developed and validated a low-cost, low-threshold training model for vascular suturing skills. This should make hands-on training more accessible to medical students and surgical residents in the future.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Hands-on Teaching ; Latex Patch Model ; Low-cost ; Patch Graft ; Skill Course ; Vascular Surgery; Surgical Skills; Simulation; Anastomosis; Education
Keywords plus
Language
english
Publication Year
2024
Prepublished in Year
0
HGF-reported in Year
2024
ISSN (print) / ISBN
2589-8450
e-ISSN
2589-8450
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 20,
Issue: ,
Pages: 194-202
Article Number: ,
Supplement: ,
Series
Publisher
Elsevier
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-506502-001
Grants
Copyright
Erfassungsdatum
2024-07-30