Stelter, J.* ; Weiss, K.* ; Steinhelfer, L.* ; Spieker, V. ; Huaroc Moquillaza, E.* ; Zhang, W.* ; Makowski, M.R.* ; Schnabel, J.A. ; Kainz, B.* ; Braren, R.F.* ; Karampinos, D.C.*
Simultaneous whole-liver water T1 and T2 mapping withisotropic resolution during free-breathing.
NMR Biomed., DOI: 10.1002/nbm.5216:e5216 (2024)
PURPOSE: To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific T 1 $$ {\mathrm{T}}_1 $$ ( wT 1 $$ {\mathrm{wT}}_1 $$ ) and T 2 $$ {\mathrm{T}}_2 $$ ( wT 2 $$ {\mathrm{wT}}_2 $$ ) mapping for the characterization of diffuse and oncological liver diseases. METHODS: The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for B 1 $$ {B}_1 $$ insensitivity at 3 T, to correct for relaxation-induced blurring, and to map T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies. RESULTS: Simulations demonstrate good B 1 $$ {B}_1 $$ insensitivity of the proposed method in measuring T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ values. The proposed method produces co-registered wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ maps with a good agreement with reference methods (phantom: wT 1 = 1 . 02 wT 1,ref - 8 . 93 ms , R 2 = 0 . 991 $$ {\mathrm{wT}}_1=1.02\kern0.1em {\mathrm{wT}}_{1,\mathrm{ref}}-8.93\kern0.1em \mathrm{ms},{R}^2=0.991 $$ ; wT 2 = 1 . 03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 $$ {\mathrm{wT}}_2=1.03\kern0.1em {\mathrm{wT}}_{2,\mathrm{ref}}+0.73\kern0.1em \mathrm{ms},{R}^2=0.995 $$ ). The proposed wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ mapping exhibits good repeatability and can be robustly performed in patients with pathologies. CONCLUSIONS: The proposed method allows whole-liver wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ quantification with high accuracy at isotropic resolution in a fixed acquisition time during free-breathing.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Bir‐4 Preparation ; Dictionary Matching ; Radial Stack‐of‐stars ; Relaxometry ; Water–fat Separation; Multiparametric Magnetic-resonance; Inversion-recovery Molli; T2 Relaxation-times; Adipose-tissue; Gradient-echo; Fat; Mri; Disease; Quantification; Fibrosis
Keywords plus
Language
english
Publication Year
2024
Prepublished in Year
0
HGF-reported in Year
2024
ISSN (print) / ISBN
0952-3480
e-ISSN
1099-1492
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: ,
Issue: ,
Pages: ,
Article Number: e5216
Supplement: ,
Series
Publisher
Wiley
Publishing Place
111 River St, Hoboken 07030-5774, Nj Usa
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Institute for Machine Learning in Biomed Imaging (IML)
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-507100-001
Grants
TUM International Graduate School of Science and Engineering
Philips Healthcare
Copyright
Erfassungsdatum
2024-09-27