PuSH - Publication Server of Helmholtz Zentrum München

Kim, M. ; Lee, H.R.* ; Ossikovski, R.* ; Jobart-Malfait, A.* ; Lamarque, D.* ; Novikova, T.*

Digital histology of gastric tissue biopsies with liquid crystal-based Mueller microscope and machine learning approach.

In: (Liquid Crystals Optics and Photonic Devices 2024, 8-11 April 2024, Strasbourg). 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa: SPIE, 2024. DOI: 10.1117/12.3021846 (Proc. SPIE ; 13016)
Postprint DOI
Open Access Green
We investigated gastric tissue biopsies using a liquid crystal-based Mueller microscope and a machine-learning approach to examine the degree of inflammation. Machine learning and statistical analysis were performed with the multidimensional dataset including the polarimetric properties (linear retardance and dichroism, and circular depolarization) and total transmitted intensity images of the unstained thin sections of gastric tissue to identify and quantify the microstructural differences between healthy control, chronic gastritis, and gastric cancer.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Conference contribution
Corresponding Author
Keywords Gastric Cancer ; Mueller Microscopy ; Optical Anisotropy ; Statistical Image Analysis
ISSN (print) / ISBN 0277-786X
e-ISSN 1996-756X
Conference Title Liquid Crystals Optics and Photonic Devices 2024
Conference Date 8-11 April 2024
Conference Location Strasbourg
Quellenangaben Volume: 13016 Issue: , Pages: , Article Number: , Supplement: ,
Publisher SPIE
Publishing Place 1000 20th St, Po Box 10, Bellingham, Wa 98227-0010 Usa
Non-patent literature Publications
Reviewing status Peer reviewed
Grants French Gastroenterology Society
ANR grant EMMIE