PuSH - Publication Server of Helmholtz Zentrum München

Hoffmann, A. ; Lorenz, C.A.* ; Fallmann, J.* ; Wolff, P.* ; Lechner, A.* ; Betat, H.* ; Mörl, M.* ; Stadler, P.F.*

Temperature-dependent tRNA modifications in bacillales.

Int. J. Mol. Sci. 25:8823 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Transfer RNA (tRNA) modifications are essential for the temperature adaptation of thermophilic and psychrophilic organisms as they control the rigidity and flexibility of transcripts. To further understand how specific tRNA modifications are adjusted to maintain functionality in response to temperature fluctuations, we investigated whether tRNA modifications represent an adaptation of bacteria to different growth temperatures (minimal, optimal, and maximal), focusing on closely related psychrophilic (P. halocryophilus and E. sibiricum), mesophilic (B. subtilis), and thermophilic (G. stearothermophilus) Bacillales. Utilizing an RNA sequencing approach combined with chemical pre-treatment of tRNA samples, we systematically profiled dihydrouridine (D), 4-thiouridine (s4U), 7-methyl-guanosine (m7G), and pseudouridine (Ψ) modifications at single-nucleotide resolution. Despite their close relationship, each bacterium exhibited a unique tRNA modification profile. Our findings revealed increased tRNA modifications in the thermophilic bacterium at its optimal growth temperature, particularly showing elevated levels of s4U8 and Ψ55 modifications compared to non-thermophilic bacteria, indicating a temperature-dependent regulation that may contribute to thermotolerance. Furthermore, we observed higher levels of D modifications in psychrophilic and mesophilic bacteria, indicating an adaptive strategy for cold environments by enhancing local flexibility in tRNAs. Our method demonstrated high effectiveness in identifying tRNA modifications compared to an established tool, highlighting its potential for precise tRNA profiling studies.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Rna Modification ; Rna Sequencing ; Bacteria ; Trna ; Thermal Adaption; Modified Nucleotides; Posttranscriptional Modification; Messenger-rna; Identification; Pseudouridine; Nucleoside; Stabilization; 4-thiouridine; Compilation; Sequences
ISSN (print) / ISBN 1422-0067
e-ISSN 1661-6596
Quellenangaben Volume: 25, Issue: 16, Pages: , Article Number: 8823 Supplement: ,
Publisher MDPI
Publishing Place Basel
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
Grants Deutsche Forschungsgemeinschaft (DFG)
Deutsche Forschungsgemeinschaft