PuSH - Publication Server of Helmholtz Zentrum München

Binz, M. ; Dasgupta, I.* ; Jagadish, A.K. ; Botvinick, M.* ; Wang, J.X.* ; Schulz, E.

Meta-learning: Data, architecture, and both.

Behav. Brain Res. 47:e170 (2024)
Publ. Version/Full Text DOI PMC
We are encouraged by the many positive commentaries on our target article. In this response, we recapitulate some of the points raised and identify synergies between them. We have arranged our response based on the tension between data and architecture that arises in the meta-learning framework. We additionally provide a short discussion that touches upon connections to foundation models.
Altmetric
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Other: News Item
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 0166-4328
e-ISSN 1872-7549
Quellenangaben Volume: 47, Issue: , Pages: , Article Number: e170 Supplement: ,
Publisher Elsevier
Reviewing status Peer reviewed
Institute(s) Institute of AI for Health (AIH)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-540011-001
PubMed ID 39311510
Erfassungsdatum 2024-09-30