Open Access Green as soon as Postprint is submitted to ZB.
Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries.
Nat. Genet., DOI: 10.1038/s41588-024-01951-z (2024)
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signalling and brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
ISSN (print) / ISBN
1061-4036
e-ISSN
1546-1718
Journal
Nature Genetics
Publisher
Nature Publishing Group
Publishing Place
New York, NY
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Institute of Neurogenomics (ING)