PuSH - Publication Server of Helmholtz Zentrum München

Edenhofer, G.* ; Frank, P.* ; Roth, J.* ; Leike, R.H.* ; Guerdi, M.* ; Platz, L.I. ; Guardiani, M.* ; Eberle, V.* ; Westerkamp, M.* ; Enßlin, T.A.*

Re-envisioning numerical information field theory (NIFTy.re): A library for gaussian processes and variational inference.

JOSS, DOI: 10.21105/joss.06593 (2024)
Publ. Version/Full Text DOI
Free journal
Creative Commons Lizenzvertrag
Open Access Green as soon as Postprint is submitted to ZB.
maging is the process of transforming noisy, incomplete data into a space that humans can interpret. NIFTy is a Bayesian framework for imaging and has already successfully been applied to many fields in astrophysics. Previous design decisions held the performance and the development of methods in NIFTy back. We present a rewrite of NIFTy, coined NIFTy.re, which reworks the modeling principle, extends the inference strategies, and outsources much of the heavy lifting to JAX. The rewrite dramatically accelerates models written in NIFTy, lays the foundation for new types of inference machineries, improves maintainability, and enables interoperability between NIFTy and the JAX machine learning ecosystem.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Review
Language english
Publication Year 2024
HGF-reported in Year 2024
ISSN (print) / ISBN 2475-9066
e-ISSN 2475-9066
Publisher Open Journals
Reviewing status Peer reviewed
Institute(s) Institute of Biological and Medical Imaging (IBMI)
Institute of AI for Health (AIH)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-505500-001
G-540002-001
Erfassungsdatum 2024-10-17