PuSH - Publication Server of Helmholtz Zentrum München

Rabelo Schley, T. ; Zhu, T. ; Geist, B. ; Crabos, A.* ; Dietrich, D.* ; Alandes, R.A.* ; Bennett, M.J.* ; Nacry, P.* ; Schäffner, A.

The Arabidopsis PIP1;1 aquaporin represses lateral root development and nitrate uptake under low nitrate availability.

Plant Cell Environ., DOI: 10.1111/pce.15222 (2024)
Publ. Version/Full Text DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Nitrate (NO3 -) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO3 - deficiency to systematically approach the impact of PIPs under these conditions. NO3 - deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO3 - is scarce. Indeed, PIP1;1 compromises root and shoot NO3 - accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO3 - deficiency. Thus, LR plasticity and NO3 - uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO3 --deficient conditions.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Arabidopsis Thaliana ; Pip Aquaporin Family ; Nutrient Deficiency ; Root System Architecture; Hydraulic Conductivity; Transporter Nrt2.1; Water Transport; Leaf Hydraulics; Responses; Expression; System; Phosphorylation; Channels; Reveals
ISSN (print) / ISBN 0140-7791
e-ISSN 1365-3040
Publisher Wiley
Publishing Place Malden, MA
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Financial support was provided by Ludwig-Maximilians-Universität München. INRAE: IB22_AAP_11_1318_CAFCAE