PuSH - Publication Server of Helmholtz Zentrum München

On differentially private 3D medical image synthesis with controllable latent diffusion models.

In: (Deep Generative Models). Berlin [u.a.]: Springer, 2025. 139-149 (Lect. Notes Comput. Sc. ; 15224 LNCS)
DOI
Generally, the small size of public medical imaging datasets coupled with stringent privacy concerns, hampers the advancement of data-hungry deep learning models in medical imaging. This study addresses these challenges for 3D cardiac MRI images in the short-axis view. We propose Latent Diffusion Models that generate synthetic images conditioned on medical attributes, while ensuring patient privacy through differentially private model training. To our knowledge, this is the first work to apply and quantify differential privacy in 3D medical image generation. We pre-train our models on public data and finetune them with differential privacy on the UK Biobank dataset. Our experiments reveal that pre-training significantly improves model performance, achieving a Fréchet Inception Distance (FID) of 26.77 at ϵ=10, compared to 92.52 for models without pre-training. Additionally, we explore the trade-off between privacy constraints and image quality, investigating how tighter privacy budgets affect output controllability and may lead to degraded performance. Our results demonstrate that proper consideration during training with differential privacy can substantially improve the quality of synthetic cardiac MRI images, but there are still notable challenges in achieving consistent medical realism. Code: https://github.com/compai-lab/2024-miccai-dgm-daum.
Altmetric
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Conference contribution
Keywords Cardiac Mri ; Differential Privacy ; Generative Models ; Synthetic Data
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Conference Title Deep Generative Models
Quellenangaben Volume: 15224 LNCS, Issue: , Pages: 139-149 Article Number: , Supplement: ,
Publisher Springer
Publishing Place Berlin [u.a.]
Institute(s) Institute for Machine Learning in Biomed Imaging (IML)
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-507100-001
Scopus ID 85206989618
Erfassungsdatum 2024-10-30