Thacher, J.D.* ; Snigireva, A.* ; Dauter, U.M.* ; Delaval, M.N. ; Oudin, A.* ; Mattisson, K.* ; Sørensen, M.* ; Borgquist, S.* ; Albin, M.* ; Broberg, K.*
     
    
        
Road traffic noise and breast cancer: DNA methylation in four core circadian genes.
    
    
        
    
    
        
        Clin. Epigenet. 16:168 (2024)
    
    
    
      
      
	
	    BACKGROUND: Transportation noise has been linked with breast cancer, but existing literature is conflicting. One proposed mechanism is that transportation noise disrupts sleep and the circadian rhythm. We investigated the relationships between road traffic noise, DNA methylation in circadian rhythm genes, and breast cancer. We selected 610 female participants (318 breast cancer cases and 292 controls) enrolled into the Malmö, Diet, and Cancer cohort. DNA methylation of CpGs (N = 29) in regulatory regions of circadian rhythm genes (CRY1, BMAL1, CLOCK, and PER1) was assessed by pyrosequencing of DNA from lymphocytes collected at enrollment. To assess associations between modeled 5-year mean residential road traffic noise and differentially methylated CpG positions, we used linear regression models adjusting for potential confounders, including sociodemographics, shiftwork, and air pollution. Linear mixed effects models were used to evaluate road traffic noise and differentially methylated regions. Unconditional logistic regression was used to investigate CpG methylation and breast cancer. RESULTS: We found that higher mean road traffic noise was associated with lower DNA methylation of three CRY1 CpGs (CpG1, CpG2, and CpG12) and three BMAL1 CpGs (CpG2, CpG6, and CpG7). Road traffic noise was also associated with differential methylation of CRY1 and BMAL1 promoters. In CRY1 CpG2 and CpG5 and in CLOCK CpG1, increasing levels of methylation tended to be associated with lower odds of breast cancer, with odds ratios (OR) of 0.88 (95% confidence interval (CI) 0.76-1.02), 0.84 (95% CI 0.74-0.96), and 0.80 (95% CI 0.68-0.94), respectively. CONCLUSIONS: In summary, our data suggest that DNA hypomethylation in CRY1 and BMAL1 could be part of a causal chain from road traffic noise to breast cancer. This is consistent with the hypothesis that disruption of the circadian rhythm, e.g., from road traffic noise exposure, increases the risk of breast cancer. Since no prior studies have explored this association, it is essential to replicate our results.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Breast Cancer ; Dna Methylation ; Environmental Noise ; Estrogen Receptor ; Road Traffic Noise ; Sleep ; Traffic; Risk-factors; Clock Genes; Mechanisms; Exposure; Expression; Impact
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2024
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2024
    
 
    
    
        ISSN (print) / ISBN
        1868-7075
    
 
    
        e-ISSN
        1868-7083
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 16,  
	    Issue: 1,  
	    Pages: ,  
	    Article Number: 168 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Springer
        
 
        
            Publishing Place
            Berlin : Heidelberg
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30202 - Environmental Health
    
 
    
        Research field(s)
        Environmental Sciences
    
 
    
        PSP Element(s)
        G-504500-001
    
 
    
        Grants
        Forskningsrdet om Hlsa, Arbetsliv och Vlfrd
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2024-12-03