Reverte-López, M.* ; Kanwa, N.* ; Qutbuddin, Y.* ; Belousova, V.* ; Jasnin, M. ; Schwille, P.*
Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division.
Nat. Commun. 15:10415 (2024)
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Membrane Curvature; Giant Vesicles; Mind; Dynamics; Reconstitution; Phase
Keywords plus
Language
english
Publication Year
2024
Prepublished in Year
0
HGF-reported in Year
2024
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 15,
Issue: 1,
Pages: ,
Article Number: 10415
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Helmholtz Pioneer Campus (HPC)
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Pioneer Campus
PSP Element(s)
G-510008-001
Grants
Projekt DEAL
Copyright
Erfassungsdatum
2024-12-04