PuSH - Publication Server of Helmholtz Zentrum München

Efremova, M.V. ; Wiedwald, U.* ; Sigmund, F. ; Bodea, S.V. ; Ohldag, H.* ; Feggeler, T.* ; Meckenstock, R.U.* ; Panzl, L.N. ; Francke, J.* ; Beer, I.* ; Ivleva, N.P.* ; Alieva, I.B.* ; Garanina, A.S.* ; Semkina, A.S.* ; Curdt, F.* ; Josten, N.* ; Wintz, S.* ; Farle, M.* ; Lavrijsen, R.* ; Abakumov, M.A.* ; Winklhofer, M.* ; Westmeyer, G.G.

Genetically controlled iron oxide biomineralization in encapsulin nanocompartments for magnetic manipulation of a mammalian cell line.

Adv. Func. Mat. 35, DOI: 10.1002/adfm.202418013 (2025)
Publ. Version/Full Text DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10-15 A m2 per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of approximate to 30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe2O3). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords encapsulins; genetically encoded magnetic nanoparticles; iron oxide biomineralization; magnetic-activated cell sorting; MACS; magnetomechanical cell manipulation; mammalian cells; structural and magnetic characterization; Raman-spectroscopy; Hematite Nanoparticles; Ferritin; Bacterioferritin; Phosphate; Maghemite; Proteins; Cores
ISSN (print) / ISBN 1616-301X
e-ISSN 1616-3028
Quellenangaben Volume: 35, Issue: 13 Pages: , Article Number: , Supplement: ,
Publisher Wiley
Publishing Place Weinheim
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Insitute of Synthetic Biomedicine (ISBM)
Grants U.S. DOE Office of Science User Facility